Cost-Effectiveness of Lanthanum Carbonate versus Sevelamer Hydrochloride in the Treatment of Hyperphosphatemia in End-Stage Renal Disease Patients in Spain

Blanca Gros¹, Antonio Galán², Emilio González-Parra³, José Antonio Herrero⁴, Itziar Oyagüez¹, Michael Keith⁵, Miguel Ángel Casado¹

¹Pharmacoeconomics & Outcomes Research Iberia (PORIB), Madrid, Spain; ²Consorcio General Universitario de Valencia, Valencia, Spain; ³Hospital Fundación Jiménez Díaz, Madrid, Spain; ⁴Hospital Clínico San Carlos, Madrid, Spain; 5Shire Pharmaceuticals, Wayne, PA, USA.

Scan code to receive PDF file of the poster or visit: www.shirecongressposters.com/548524

BACKGROUND

- Hyperphosphataemia in patients with end-stage renal disease (ESRD) undergoing dialysis is associated with cardiovascular disease (CVD), a leading cause of death in these patients.
- Calcium-based phosphate binders are inexpensive and commonly used as first-line therapy for hyperphosphataemia, but their administration is related to an increased risk of hypercalcaemia, parathyroid hormone suppresion with risk for adynamic bone disease and vascular calcification.

METHODS

• A previously developed Markov model¹ including three health states (alive without CVD, alive with CVD, death) was customized for the Spanish situation to assess the incremental cost-effectiveness ratio (ICER) of Lantanum Carbonate (LC) versus Sevelamer Hydrochloride (SH) in second-line treatment after calcium-based binders failure. (Figure 1)

- Figure 1: Markov model **P1 Patient WITH Patient WITHOUT CVD** CVD **P2 P**3 Death CVD: cardiovascular disease; P1: probability of CVD; P2: mortality after CVD; P3: general mortality ESRD disease
- This analysis was conducted from the Spanish healthcare perspective.
- CVD was defined as the weighted incidence of several cardiovascular events².
- Yearly transition probabilities between states^{2,3} were adjusted with the relative risk related to phosphorus levels^{4,5}.
- Both, 'Intent-to-treat' (ITT) and 'Completer' populations from a head-to head study in dialyzed patients were assessed⁶.

- Deterministic and probabilistic sensitivity analyses (PSA) were conducted.
- Effectiveness was measured in a ten year time horizon in Life Year Gained (LYG) and Quality-Adjusted Life Year Gained (QALYs).

Costs and Utilities

- Unitary costs and utilities are collected in Table 1.
- In accordance with perspective, only direct costs (pharmaceutical and CVD management) were included.
- Medical costs (2012 prices in Euros) were obtained from diagnosis-related groups⁷.
- Drug costs were derived from ex-factory price (PVL)8, adjusted with 7.5% mandatory rebate9.
- Costs and outcomes were discounted at 3% annual rate¹⁰.

Table 1: Unitary costs a	nd utilities		
Pharmaceutical Costs ⁷	(PVL-7.5% rebate)		
LC (Fosrenol®) 1,000mg 90 to SH (Renagel®) 800mg 180 ta	€ 210.53 € 157.03		
CVD Costs ⁶	biets	C 107.00	
Myocardial Infarction	Alive Death	€ 5,394 € 4,522	
Congestive Heart Failure Cardiac Arrest	€ 4,499 € 4,142		
Peripheral vascular disease Stroke	€ 2,458 € 3,524		
Utilities			
ESRD Utility ¹¹ CVD Utility first year ^{12,13,14}		0.67 0.74	
CVD Utility second year ¹²		0.77	

LC: Lanthanum Carbonate, SH: Sevelamer Hydrochloride, ESRD: End-Stage Renal Disease, CVD: Cardiovascular Disease

RESULTS

- For the base-case (Table 2), ICERs of LC versus SH were €6,306/QALY (ITT) and €4,644/QALY (Completer).
- According deterministic analysis, CVD management cost was the most influential parameter in the model.
- Assuming a €30,000/QALY threshold, LC was costeffective compared with SH in 99.9% of PSA simulations (Completer and ITT). (Figure 2)

Table 2: Base Case Results											
Population		Incremental Costs	LYG	Incremental LYG	QALYs	Incremental QALYs	ICER				
	Costs						per LYG	per QALY			
Completer	LC	€18,776	€293	6.13	0.11	3.84	0.06	€2,875	€ 4,644		
Completel	SH	€18,482	C 293	6.02	0.11	3.78	0.00	C 2,073	C 4,044		
ITT	LC	€18,680	C100	6.08	0.04	3.81	0.00	60,000	6.6.000		
111	SH	€18,517	€163	6.04	6.04	3.79	0.03	€3,902	€ 6,306		

CONCLUSIONS

CL: Lanthanum Carbonate, SH: Sevelamer Hydrochloride, ICER: Incremental Cost-effectiveness Ratio, LYG: Life-Year Gained, QALY: Quality-Adjusted Life Year, ITT: Intention to treat

In Spain, Lanthanum Carbonate is cost-effective compared with Sevelamer Hydrochloride for the second-line treatment of hyperphosphataemia in patients with End-Stage Renal Disease undergoing dialysis.

References

- ¹ Park H et al. Value Health. 2011;14(8):1002-9.
- ² Renal Data System (USRDS). 2005 www.usrds.org/2002/pdf/i.pdf. ³ ERA-EDTA. Annual Report. 2006. www.era-edta-reg.org/files/an-
- nualreports/pdf/AnnRep2006.pdf.
- ⁴ Tentori F et al. Am J Kidney Dis. 2008;52:519-30. ⁵ Block GA et al. Am J Kidney Dis. 1998;31:607–17.
- ⁶ Sprague SM et al. Clin Nephrol. 2009;72:252-8. ⁷ Oblikue Database. www.oblikue.com/.
- ⁸ BotPlus 2.0. www.portalfarma.com/. ⁹ Real Decreto-ley 8/2010.www.boe.es.
- ¹⁰ López Bastida J et al. Gac Sanit. 2010;24:154-70. ¹¹ Young KC et al. J Clin Hypertens. 2009;11:555-63.
- ¹³ Nichol G et al. Pharmacoeconomics. 2003;21:191–200. ¹⁴ Spronk S et al. PLoS One. 2008;3:e3883.

¹² Ara R et al. Am J Cardiovasc Drugs. 2008;8:419-27.

Disclosures

This project was supported with a grant from Shire Pharmaceuticals

Emilio González, Jose A Herrero and Antonio Galán are members of an advisory board for the development of this project.

Blanca Gros, Itziar Oyagüez and Miguel A Casado are employees of Pharmacoeconomics & Outcomes Research Iberia (PORIB) and con-

sultants to Shire Pharmaceuticals.

Michael Keith is an employee of Shire Pharmaceuticals. PORIB was funded by Shire Pharmaceuticals to perform the study analysis and provide writing and editorial support.

