Cost-Effectiveness Analysis of Disease Modifiying Drugs (Interferons and Glatiramer Acetate) as First-Line Treatments in Remitting-Relapsing Multiple Sclerosis Patients

Sánchez-De la Rosa R¹, Sabater E², Casado MA², Arroyo R³

¹Medical Department, TEVA Pharmaceutical, Madrid, Spain; ²Pharmacoeconomics & Outcomes Research Iberia, Madrid, Spain; ³MS Unit, Hospital Clínico San Carlos, Madrid, Spain

Introduction

- Treatments used as first-line of Relapsing Remitting Multiple Sclerosis (RRMS) therapy are glatiramer acetate and the interferons β -1a and β -1b⁽¹⁾.
- In the current economical context, it is important to assess the cost-effectiveness ratio among the Disease Modifying Drugs (DMD), and provide reliable information that support clinicians and healthcare stakeholders.

Objective

To assess the cost-effectiveness of the different Disease Modifying Drugs used as first-line treatments (interferons IM IFNβ-1a, SC IFNβ-1a, SC IFNβ-1b and glatiramer acetate, GA) in Remitting-Relapsing Multiple Sclerosis (RRMS) in Spain.

Methods

- A Markov model was developed to simulate the progression of a cohort of patients with RRMS, during a period of 10 years.
- Seven health states, defined by the Expanded Disability Status Scale (EDSS), and death were considered in the model (Figure 1):
 - EDSS 0.0-2.5: no limitations or small mobility limitations
 - EDSS 3.0-5.5: moderate mobility limitations
 - EDSS 6.0-7.5: requiring some help to walk or a wheelchair
 - EDSS 8.0-9.5: incapable of getting out of bed
 - Death (natural causes or EDSS 10)
 - Relapse EDSS 0.0-2.5: a relapse with a change in disability within EDSS 0.0-2.5
 - Relapse EDSS 3.0-5.5: a relapse with a change in disability within EDSS 3.0-5.5
- In order to reflect current clinical practice for RRMS patients, patients with varying degrees of disability in terms of EDSS were included⁽²⁾.
- The cycle length considered in this Markov Model was set to 1 month.
- Initial ditribution among EDSS health states was:
 - EDSS 0.0-2.5: 30.0%
 - EDSS 3.0-5.5: 31.7%
 - EDSS 6.0-7.5: 20.6%
 - EDSS 8.0-9.5: 17.7%
- DMD used as first-line RRMS treatment included in the
 - Intramuscular interferon β-1a (IM IFNβ-1a, Avonex®, Biogen Idec Ltd)
 - Subcutaneous interferon β-1a 44mcg (SC IFNβ-1a 44mcg, Rebif 44®, Serono Europe Ltd)

Figure 1. Markov Model Structure

EDSS 3.0-5.5

- Subcutaneous interferon β-1b (SC IFNβ-1b, Betaferon[®], Bayer Schering Pharma AG and Extavia®, Novartis Europharm Ltd)
- Subcutaneous Glatiramer Acetate (SC GA; Copaxone®, Teva Pharmaceutical Ltd)
- In addition to treatment with a DMD, the model assumes that all patients receive symptomatic treatment for MS.
- An annual discount rate of 3% was applied to adjust clinical and economical results.
- Transition probabilities:
 - Transition probabilities for symptomatic treatment were obtained from the literature and represent the progression over time of patients with MS. One month probabilites were (3):
 - EDSS 0.0-2.5 to 3.0-5.5: 0.004438
 - EDSS 3.0-5.5 to 6.0-7.5: 0.009189
 - EDSS 6.0-7.5 to 8.0-9.5: 0.003583
 - EDSS 8.0-9.5 to 10 (death): 0.000952
 - Relapse Rate: 0.075500
 - It was assumed that DMD reduce the transition probabilities to health states with higher EDSS score (greater disability) and the probability of a relapse, i.e., a transition to a health state with a relapse (Relapse EDSS 0.0-2.5 or Relapse EDSS 3.0-5.5)
 - Effectiveness of each of the treatments was obtained from clinical trials
- Neutralizing antibodies
 - The current model assumes that the presence of NAbs modifies the probability of developing a relapse among patients who receive interferon- β as a DMD. Incidence
 - rates were set to(4): • IM IFNβ-1a: 4.5%
 - SC IFNβ-1a: 23.5%
 - SC IFNβ-1b: 19.3%
 - SC GA: 0.0%
- Utilities:
 - Were obtained from an observational study performed in Spain using a sample of 1,626 patients with MS who responded to the EQ-5D questionnaire(5).
 - Utility weights were set to:
 - EDSS 0.0-2.5: 0.777
 - EDSS 3.0-5.5: 0.577
 - EDSS 6.0-7.5: 0.446
 - EDSS 8.0-9.5: 0.085
 - Relapse EDSS 0.0-2.5: 0.747 Relapse EDSS 3.0-5.5: 0.547

- All costs that were obtained from the literature, were confirmed by an expert panel and were updated to € 2010 through the annual data of the Consumer Price Index (CPI).
- Costs included in the model:
 - Pharmacological
 - Management of MS
 - Loss of productivity
- Unitary Costs are specified in Table 1.

Table 1. Unitary Costs

Parameters	Reference Scenario
DMD- Drug costs	
IM IFNβ-1a SC IFNβ-1a SC IFNβ-1b SC GA	€ 907.96 € 1,267.95 € 942.59 € 848.68
MS management cost	
Health state-specific symptomatic treatment MS- costs EDSS 0.0-2.5 EDSS 3.0-5.5 EDSS 6.0-7.5 EDSS 8.0-9.5 Relapse EDSS 0.0-2.5 Relapse EDSS 3.0-5.5	€ 135.04 € 159.08 € 168.06 € 202.43 € 135.04 € 159.08
Health state-specific MS-related costs EDSS 0.0-2.5 EDSS 3.0-5.5 EDSS 6.0-7.5 EDSS 8.0-9.5 Relapse EDSS 0.0-2.5 Relapse EDSS 3.0-5.5	€ 936.72 € 1,683.79 € 2,898.13 € 4,350.83 € 1.856.56 € 2,603.13
Cost of lost worker productivity	
No treatment IM IFN β -1a SC IFN β -1a SC IFN β -1b SC GA	€ 211.44 € 174.87 € 174.87 € 197.02 € 117.02

- The life years gained (LYG), the quality-adjusted life years (QALY), during the time horizon considered were used as benefit measures.
- The efficiency of comparing the treatments in RRMS was established through the Incremental Cost-Effectiveness Ratio (ICER) and the Incremental Cost-Utility Ratio (ICUR). For each comparison, the reference treatment was the most effective of the treatments compared.
- For an appropriate interpretation of these ratios, it was used the commonly accepted efficiency threshold in Spain (€ 30,000 per QALY)⁽⁶⁾.

Results

 GA was the less costly strategy (€322,510), followed by IM IFNβ-1a (€ 329,595), SC IFNβ-1b (€ 333,925) and SC IFNβ-1a (€ 348,208).

All health states car progress to death

DEATH

• IM IFNβ-1a has shown the best efficacy results with 4,176 QALY, followed by SC IFNβ-1a (4.158 QALY), SC IFNβ-1b (4.157 QALY) and GA (4.117 QALY).

Figure 2. Cost-efectiveness plane of IM IFNb-1a vs other DMDs (SC IFNβ-1a, SC IFNβ-1b,SC GA)

- Incremental costs per QALY gained with IM IFNβ-1a were €-1,005,194/QALY, €-223,397/QALY, and
- €117,914/QALY in comparison to SC IFNβ-1a, SC IFNβ-1b and GA, respectively.

Table 2 Cost-effectiveness results				
	IM IFNβ-1a	SC IFNβ -1a	SC IFNβ -1b	SC GA
MS Drug Costs per patient (€,2010)	€ 47,531.94	€ 65,474.67	€ 48,751.47	€ 42,453.89
Total Costs (€,2010)	€ 329,595.43	€ 348,208.20	€ 333,925.31	€ 322,509.96
Life Years Gained (LYG) per patient	8.580766998	8.580462928	8.580450005	8.579813781
Incremental cost-effectiveness ratio (cost/LYG) IM IFN β -1a vs. (SC IFN β -1a or SC IFN β -1b or SC GA)	NA	Dominant	Dominant	7,433,218
Incremental cost-effectiveness ratio (cost/LYG) SC IFN β -1a vs. (SC IFN β -1b or SC GA)	NA	NA	1,105,230,210	39,587,705
Incremental cost-effectiveness ratio (cost/LYG) SC IFN β -1b vs. SC GA	NA	NA	NA	17,942,344
Quality Adjusted Life Years (QALY) per patient	4.17699627	4.15847968	4.15761431	4.116906617
Incremental cost- utility ratio (cost/ QALY) IM IFN β -1a vs. (SC IFN β -1a or SC IFN β -1b or SC GA)	NA	Dominant	Dominant	117,914
Incremental cost- utility ratio (cost/ QALY) SC IFN β -1a vs.(or SC IFN β -1b or SC GA)	NA	NA	16,504,952	618,146
Incremental cost- utility ratio (cost/ QALY) SC IFN β -1b vs. SC GA	NA	NA	NA	280,422

Conclusions

- First-line treatment with Glatiramer Acetate is the less costly strategy for the treatment of patients with Relapsing Remitting Multiple Sclerosis.
- Treatment with Intramuscular Interferon β-1a is a dominant strategy (lower cost and higher QALY) compared with Subcutaneous Interferon β-1a and Subcutaneous Interferon β-1b.
- Intramuscular Interferon β-1a is not a cost-effective strategy versus Glatiramer Acetate, because incremental cost per QALY gained with Intramuscular Interferon β-1a exceeds the € 30,000 per QALY threshold, commonly used in Spain.

References

- 1 García Merino A, Fernández O, Montalbán X, de Andrés C, Arbizu T. (Spanish Neurology Society consensus document on the use of drugs in multiple sclerosis: escalating therapy]. Neurologia. 2010;25(6):378-90
- ² Kobelt G, Lindgren P, Smala A, et al. Costs and quality of life in multiple sclerosis: a cross-sectional observational study in
- Germany, Stockholm School of Economics Working Paper Series in Economics and Finance, Final Version August 12, 2000 ³ Bell C, Graham J, Earnshaw S, Oleen-Burkey M, Castelli-Haley J, Johnson K. Cost-effectiveness of four immunomodulatory therapies for relapsing-remitting multiple sclerosis: a Markov model based on long-term clinical data. J Manag Care Pharm
- 2007;13:245-61. ⁴ Bertolotto A. Implications of neutralising antibodies on therapeutic efficacy. J Neurol Sci. 2009;277:S29-32
- ⁵ Kobelt G, Berg J, Lindgren P, Fredrikson S, Jönsson B. Costs and quality of life of patients with multiple sclerosis in Europe. J Neurol Neurosurg Psychiatry 2006;77:918-26
- ⁶ Sacristán JA, Oliva J, Del Llano J, et al. ¿Qué es una tecnología sanitaria eficiente en España? Gac San 2002;16.334-43.

