

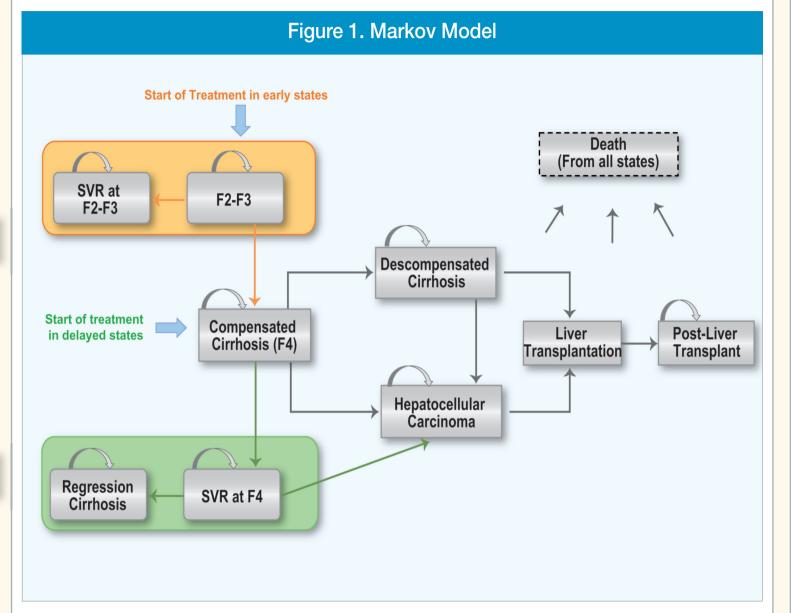
Early versus delayed use of sofosbuvir plus peginterferon/ribavirin therapy in fibrosis patients with hepatitis C virus: a cost-effectiveness analysis

M. Buti¹, R. Domínguez-Hernández², I. Oyagüez², M. Rueda³, MA. Casado²

¹Hospital Vall' d'Hebrón, Barcelona, Spain; ²Pharmacoeconomics & Outcomes Research Iberia, Madrid, Spain; ³Gilead Sciences, Madrid, Spain.

Background

- The administration of treatment in patients with chronic hepatitis C virus (HCV) infection in different disease stages is associated with a variation in the therapy's
- The early diagnosis and HCV-therapy are important for reducing the incidence of liver complications of progressive disease for patients with chronic hepatitis C $(CHC)^1$.


Objetive

The aim of the analysis was to assess the cost-effectiveness of sofosbuvir combined with peginterferon alfa-2a plus ribavirin (SOF/PEG-IFN/RBV) at early versus delayed fibrosis disease stage, in previously untreated patients infected with HCV genotype 1.

Methods

- A Markov model with ten health states was developed to compare lifetime cost and outcomes (life years gained-LYG and quality-adjusted life years-QALY) of two treatment strategies: early SOF/PEG-IFN/RBV at mild-moderate fibrosis (F2-F3) or delayed treatment at compensated cirrhosis (F4).
- The efficacy data was measured as sustained virologic response (SVR) at 12-weeks after therapy completion (based on NEUTRINO study)2: 91% (F2-F3) y 81% (F4)³.
- In absence of disaggregated data, no discontinuation therapy due to lack of efficacy or adverse events was assumed.
- Patients in "SVR at F4" state were allowed to transit to regression of cirrhosis or hepatocellular carcinoma (HCC).
- Patients who achieved "SVR at F2-F3" or "cirrhosis regression" were considered cured and therefore they had the same life expectancy as the general population.
- Annual transition probabilities were obtained from published sources⁴⁻⁸ and adjusted with specific mortality by age⁹ (mean age: 52 years).
- From the Spanish National Health System perspective, only direct cost (pharmaceutical, and disease cost by health state) were included. Cost were expressed in Euro (€) 2014.
- Drug cost for the SOF/PEG-IFN/RBV 12-weeks regimen was calculated based on available local ex-factory prices¹⁰ with applicable mandatory deductions for marketed drugs¹¹.
- Disease management costs^{12,13} and utilities values¹⁴ by health state were based on literature (Table 1).
- A 3% annual discount rate was applied to costs and health benefits¹⁵.
- Deterministic and probabilistic sensitivity analysis (PSA) were performed to assess the model robustness.

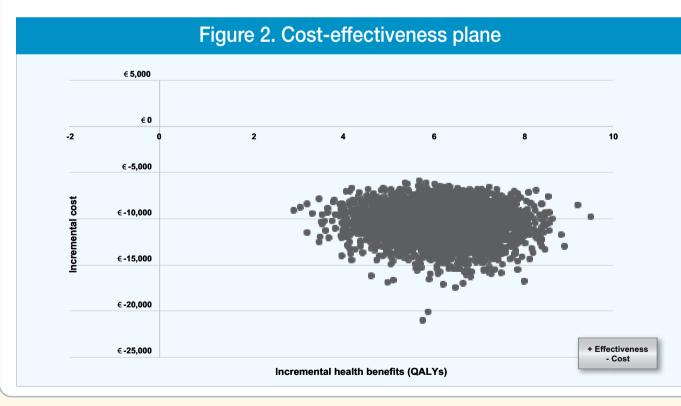
Methods (Cont.)

SVR: Sustained Virologic Response. F2-F3: mild-moderate liver fibrosis (Metavir stage)

Table 1. Unit costs (€, 2014) and utilities

Drug costs (ex-factory price ¹⁰ with	Weekly cost	
SOF (Sovaldi®, 400 mg/day)		€ 3,237.50
PegIFN-2a (Pegasys®, 180 μg/week)		€ 177.07
Generic RBV (1,000 mg/day (<75kg), 1,200mg/day (≥75kg))*16		€ 130.22
Health states	Utilities ¹⁴	Annual cost ¹²⁻¹³
F2-F3	0.71	€ 241.92
SVR at F2-F3	0.77 [∓]	€ 0.00
F4	0.55	€ 449.32
SVR at F4	0.59^{\dagger}	€ 449.32
Regression of cirrhosis	0.59 [‡]	€ 0.00
Decompensated cirrhosis (DC)	0.45	€ 1,532.73
Hepatocelluar carcinoma (HCC)	0.45	€7,019.17
Liver Transplant (LT)	0.45	€ 143,647.97
Post liver transplant (post-LT)	0.67	€ 14,863.97

*43.8% patients <75kg and 56.2% ≥75kg. *Average utility of F2 and F3 states. † The same increase in quality of live that from F2-F3 to SVR at F2-F3. †The same utility that SVR at F4.


Results

- Early SOF/PEG-IFN/RBV therapy at F2-F3 was more effective (14.14 QALY) than delayed treatment at F4 (9.27 QALY) (Table 2).
- In a 1.000 patients cohort, SOF/PEG-IFN/RBV at F2-F3 could avoid new cases of liver disease complications compared to delayed therapy in F4 patients (Table 2).
- Total cost of early therapy at F2-F3 with SOF/PEG-IFN/RBV was lower than the cost of delayed treatment in F4 (Table 2).

Table 2. Base case results analysis				
	F2-F3	F4	Difference (Incremental)	
Life years gained (LYG)	19.12	16.36	2.76	
Quality Adjusted Life Years (QALY)	14.14	9.27	4.87	
Total cost	€ 43,263.44	€ 49,018.85	€ -5,755.41	
Health States	Number of cases		Avoided cases (F2-F3 vs F4)	
Cases of DC	38	104	-66	
Cases of HCC	17	77	-60	
Liver Transplants	1	5	-4	

DC:Descompensated Cirrhosis. HCC: Hepatocellular Carcinoma.

- Early versus delayed SOF/PEG-IFN/RBV therapy was a dominant strategy (more effective and less costly).
- In PSA, with 5,000 Montecarlo simulations, early use of SOF/PEG-IFN/RBV remained dominant in 100% of simulations (Figure 2).

Conclusion

Initiating SOF/PEG-IFN/RBV treatment at early fibrosis stages (F2-F3) compared to delayed administration of therapy at F4, in previously untreated patients infected with HCV genotype 1:

- · Reduce the incidence of new cases of liver-disease complications and it is associated to cost savings for the Spanish National Health System.
- It is a cost-effective strategy (more effective and less costly) in the treatment of patients with CHC.

Disclosure

POSTER: P0869

The present work was done through an unrestricted grant received from Gilead Sciences.

Author MB declares have not any conflict of interest

References

- Cholongitas E, et al. Ann Gastro enterol. 2014;27:331-7.
- ² Lawitz E, et al. Engl J Med. 2013;369:678-9. ³ Ficha Técnica Sovaldi[®]. ⁴ Buti M, et al. J Hepatol. 2005;42:639-45.
- ⁵ D'Ambrosio R, et al. Hepatology. 2012;56:532-43.
 - Elbasha EH,et al. Appl Health Econ Health Policy. 2013;11:65-78.
 - Ferrante SA, et al. BMC Infectious Diseases 2013, 13:190. ⁸ Saab S, et al. Liver Transpl. 2010;16:748-59.
- Instituto Nacional de Estadística (INE). Tasas mortalidad. www.ine.es
- ¹⁰ BOT Plus. www.portalfarma.com

¹² Casado MA, et al. Farm Hosp. 2006;30:291-9.

- ¹¹ Real Decreto-ley 8/2010. www.boe.es
- ¹³ San Miguel R, et al. Aliment Pharmacol Ther. 2003;17:765-73.
- ¹⁴ Wright M, et al. Health Technol Assess. 2006;10(21):1-113.
 - ¹⁵ López Bastida J, et al. Gac Sanit. 2010;24;154-70. ¹⁶ Fernández I, et al. Póster XXXIX Congreso Anual AEEH.