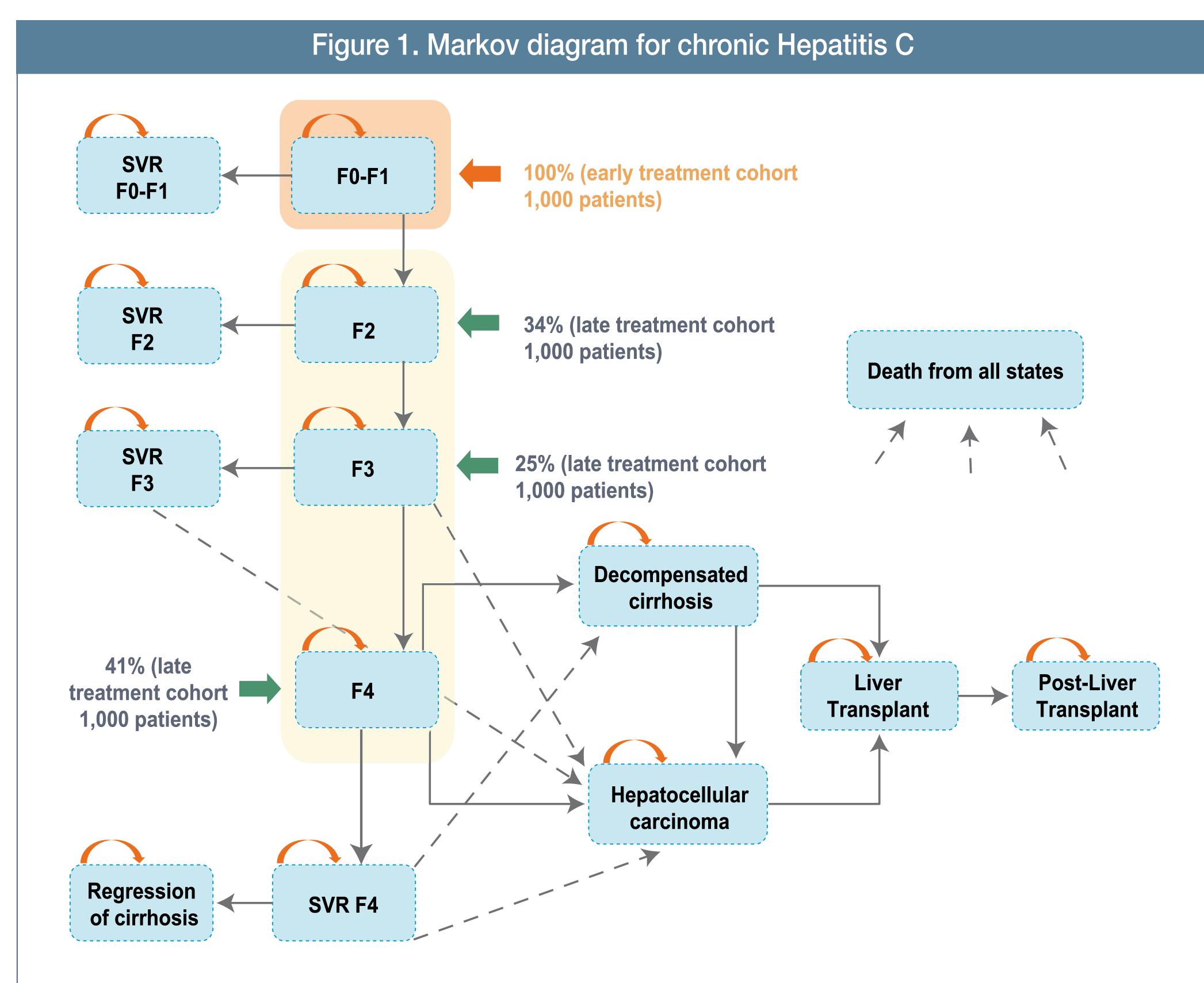
Ledipasvir/Sofosbuvir (LDV/SOF) treatment of naïve patients with mild chronic hepatitis C (CHC) genotype 1 (GT1) compared to patients with significant fibrosis: is it a cost-effective therapy?

Background


- Direct Acting Antivirals in patients with chronic hepatitis C (CHC) have shown high efficacy in genotype 1 (GT1). • Spanish National HCV Plan prioritizes therapy of patients with significant fibrosis (\geq F2). However, early
- diagnosis and treatment are important to prevent disease complications and to eliminate HCV infection¹. • Ledipasvir/Sofosbuvir (LDV/SOF) for 8-24 weeks is a recommended treatment for HCV GT1 patients. Therapy duration depends on the presence of cirrhosis, baseline viral load and treatment experience. LDV/SOF for 8
- weeks is the recommended for GT 1 naïve patients without cirrhosis².
- Simplified treatment is associated with less monitoring and has been seen to be associated with improved adherence³.

Objective

The aim of the study was to estimate the cost-effectiveness and cost-utility of LDV/SOF treatment in GT1 naïve patients with mild or no fibrosis (F0-F1) compared with those with significant fibrosis or cirrhosis (\geq F2) from the Spanish National Health System perspective.

Methods

- A Markov model was developed to simulate the natural course of CHC infection comparing both treatment initiation options for two cohorts of 1,000 patients with an average age of 52 years⁴ (Figure 1). • In the early treatment cohort, 100% of patients started into F0-F1 states. Patients with significant fibrosis
- are distributed across the fibrosis states, according to proportions observed in Spanish population with CHC (34% F2, 25% F3 and 41% F4)⁴.
- The effectiveness of therapy was measured as sustained virologic response (SRV) rate based on real-world evidence⁵⁻⁶ after 12-weeks of the end of treatment (Table 1).
- The duration of treatment of F0 to F3 patients was determined according to HCV viral load. - Patients with a viral load <6 million UI/mL $(94,25\%)^7$ received 8 weeks of therapy. – Patients with ≥ 6 million Ul/mL (5,75%)⁷ received 12 weeks of therapy.
- It was assumed that all patients completed only one course of treatment and retreatment was not evaluated. • The annual transition probabilities were obtained from published studies⁸⁻¹³, and adjusted annually based on the mortality by age range¹⁴.

F0-F1: METAVIR liver fibrosis score, absence or mild fibrosis; F2: METAVIR liver fibrosis score, moderate fibrosis; F3: METAVIR liver fibrosis score, severe fibrosis; F4: METAVIR liver fibrosis score, compensated cirrhosis. SVR: Sustained Virological Response.

María Buti¹, Raquel Domínguez-Hernández², Miguel Ángel Casado² ¹Hospital Vall' d'Hebrón, Barcelona, Spain; ²Pharmacoeconomics & Outcomes Research Iberia, Madrid, Spain

- disease.
- Probability of cirrhosis regression was considered for patients with F4 and SVR. • Utility values obtained from the literature were applied to the different health states¹⁵.
- nagement for each health state^{10,18} (Table 1).
- A 3% discount rate was applied to costs and outcomes¹⁹.
- A Probabilistic Sensitivity Analysis (PSA) was performed to assess the robustness of the model.

Table 1. SVR12 rates, unit cost (\in , 2015) and utilities for the base case

	SVR12 rates for each fibrosis states (%)					
	Treatment duration					
Health states	8 weeks ³	12 weeks ³⁻⁴				
F0-F1	96.94%*	97.52%*				
F2	95.00%	95.57%				
F3	96.88%	95.36%				
F4		88.00%				
Health states	Annual costs ¹⁷⁻¹⁸	Utility values ¹³				
F0-F1	€265.12	0.98 ⁺				
F2	€282.58	0.92				
F3	€282.58	0.79				
F4	€558.06	0.76				
SVR from F0-F1	€112.75	1.00				
SVR from F2	€112.75	0.92				
SVR from F3	€112.75	0.86				
SVR from F4	€449.32	0.83				
Regr. C	€112.75	0.86 [‡]				
DC	€2,272.52	0.69				
HCC	€6,656.00	0.67				
LT	€122,075.31	0.5				
Post-LT	€17,841.48	0.77				

DC: Decompensated Cirrhosis; HCC: Hepatocellular carcinoma; LT: Liver transplant; Regr. C: Regression of cirrhosis; SVR: Sustained Virological Response. *A weighted for SVR from F0-F1 rate (8-12 weeks).⁺The average utilities estimate from F0 and F1 states. *The same annual utility scores that SVR F3

- LDV/SOF in patients with F0-F1 was a dominant strategy (less costly and more effective).
- to disease management and monitoring) (Table 2).
- therapy for patients with \geq F2 (Figure 2).
- fibrosis stages (F0-F1) was a dominant strategy in 100% of the simulations (Figure 3).

Table 2. Base case results analysis (per patient)					
	Treatment of mild	Treatment of significant	Incremental difference		
	fibrosis (F0-F1)	fibrosis (F2-F3-F4)	(mild vs significant fibrosis)		
Life Years Gained	19.85	18.63	1.22		
QALY	19.80	16.25	3.54		
Average total cost	€30,822.51	€40,050.99	€-9,228.49		

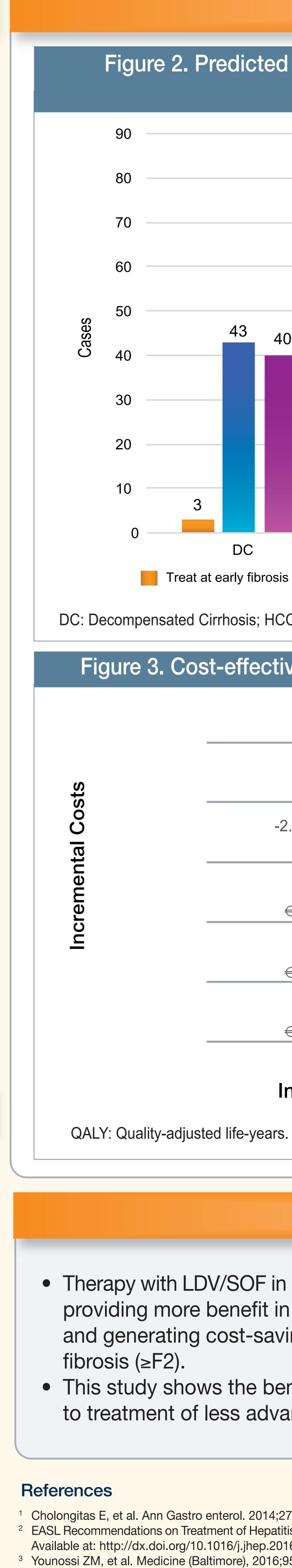
LYG: Life-years gained; QALY: Quality-adjusted life-years

Methods

• Patients with disease stages F0-F1 and F2 who achieved an SVR were considered "cured" of viral and hepatic

• Patients with disease stages F3 and F4 who attained a SVR could progress to hepatocellular carcinoma (HCC).

• The analysis considered only direct health costs (€, 2015): drug costs were based on the published local list prices¹⁶ with applicable mandatory deductions $(7.5\%)^{17}$ (\in 3,622.92/weekly), monitoring costs and disease ma-

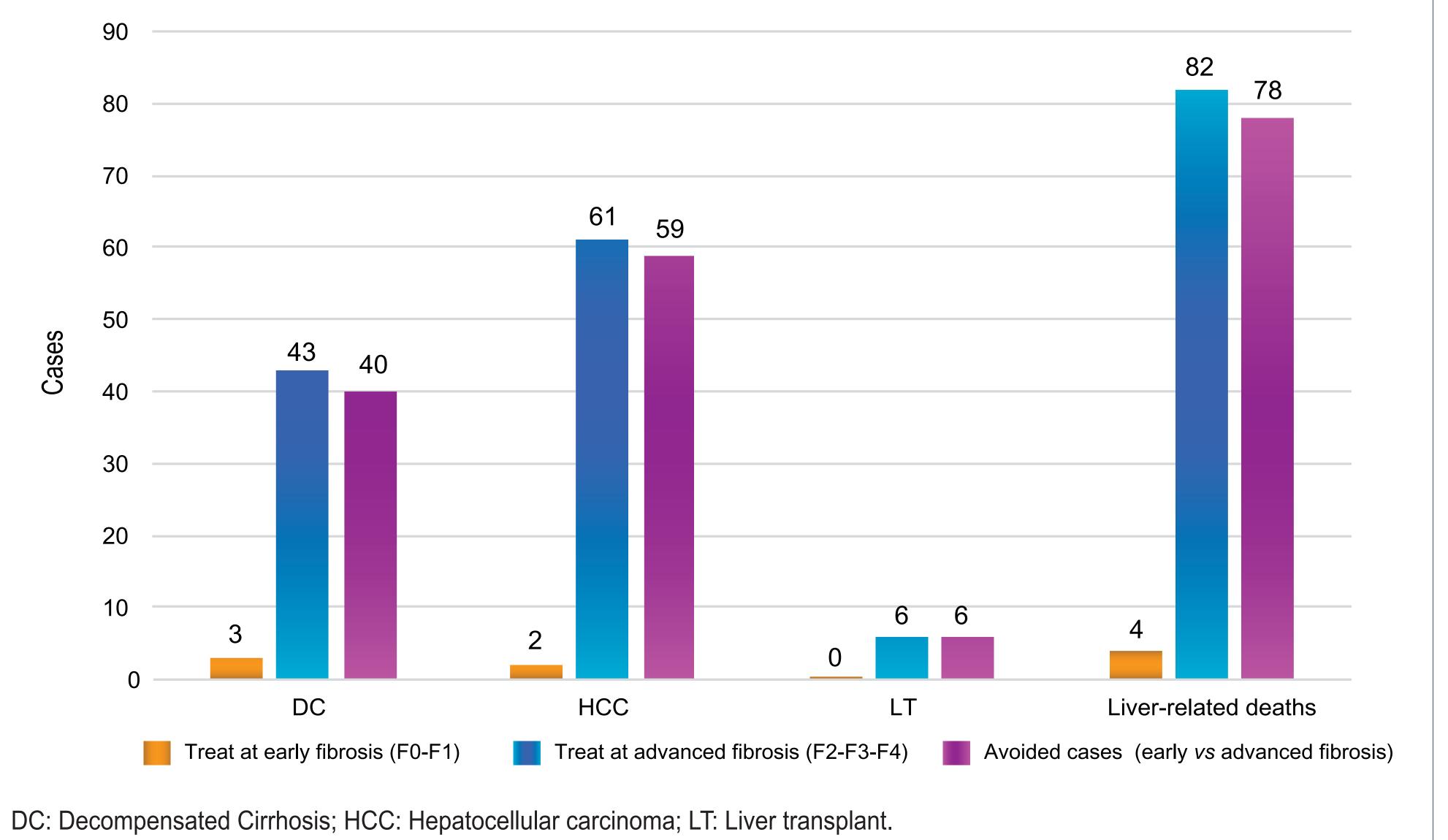

• The model estimated costs, Life Years Gained (LYG) and Quality-Adjusted Life Years (QALY) over patients' lifetime.

Results

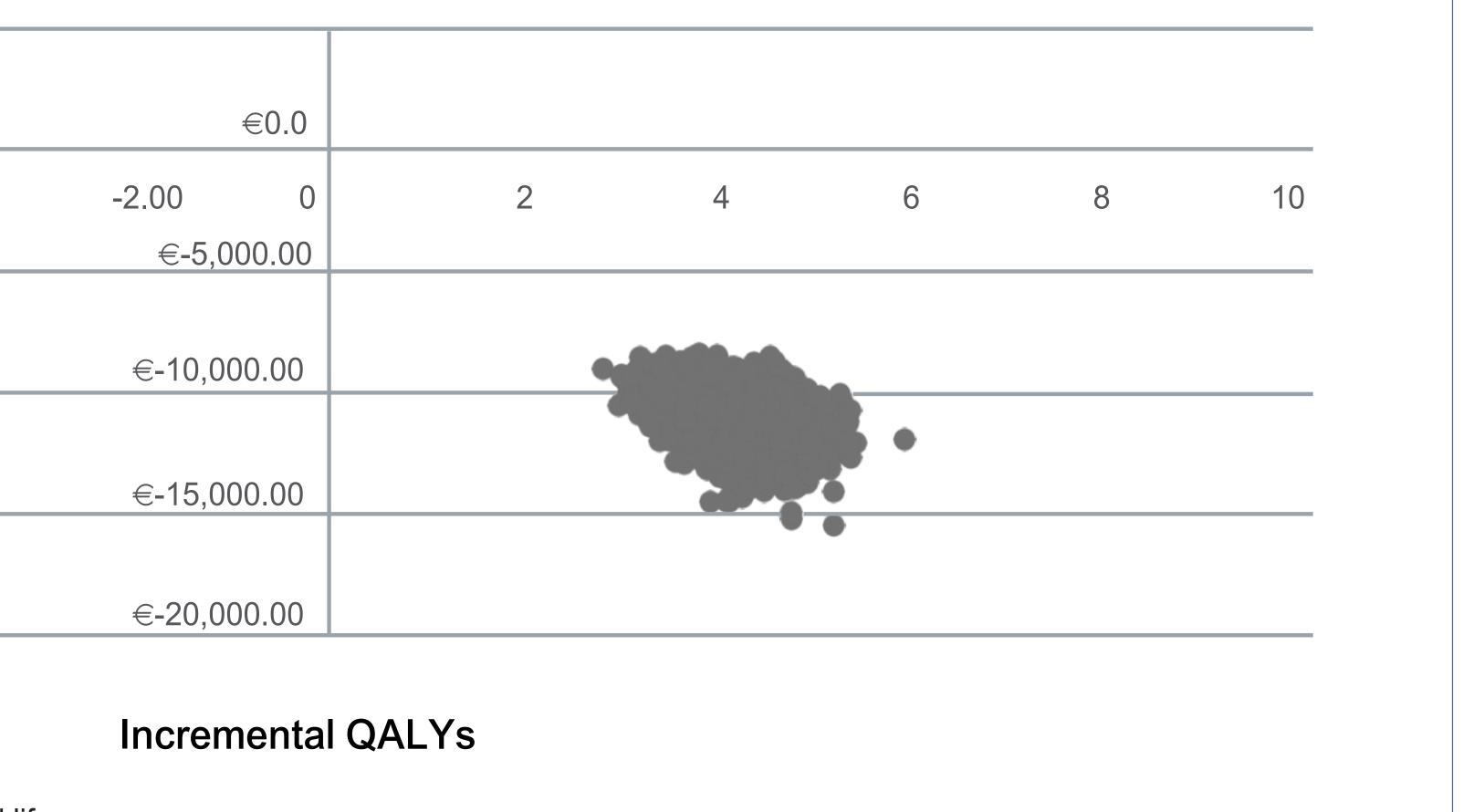
• Treatment initiation with LDV/SOF in patients at stages F0-F1, is more effective (19.85 LYG and 19.80 QALY) than initiation at stage \ge F2 (18.63 LYG and 16.25 QALY), generating cost-savings of \in 9,228.49 per patient (\in 3,661 due

• In a cohort of 1,000 HCV patients, LDV/SOF treatment in patients with F0-F1 avoided 40 cases of decompensated cirrhosis, 59 hepatocellular carcinoma, 6 liver transplant and 78 liver-related deaths compared with the same

• The PSA, conducted using a Monte Carlo simulation with 5,000 runs, showed that LDV/SOF therapy at early



- ⁴ Buti M, et al. Rev Esp Quimioter. 2 ⁵ Curry MP, et al. AASLD annual cong
- ⁶ Gill K, et al. AASLD annual congre
- ⁷ Barreiro P, et al. Clin Virol. 2015;71 ⁸ Buti M, et al. J Hepatol. 2005;42:63
- ⁹ Ferrante SA, et al. BMC Infect Dis.
- ¹⁰ San Miguel R, et al. Gut. 2014;64:1



Results

Figure 2. Predicted liver-related complications in relation to therapy of patients with mild fibrosis vs. significant fibrosis

Figure 3. Cost-effectiveness plane (treatment in early fibrosis vs. significant fibrosis)

Conclusion

• Therapy with LDV/SOF in CHC GT1 naïve patients with mild or no fibrosis (F0-F1) is cost-effective, providing more benefit in terms of LYG and QALY, reducing the incidence of liver complications and generating cost-savings to the NHS, compared to the treatment in patients with significant

• This study shows the benefit of treating patients in early fibrosis stages, supporting the access to treatment of less advanced patients.

terol. 2014;27:331-7. ent of Hepatitis C 2016; Journal of Hepatology 2016. 16/j.jhep.2016.09.001 nore), 2016;95:e4151 015;28:145-53. gress 2015; San Francisco, Poster 1108. es 2015; San Francisco, Poster 1111. -63-6. 9-45. 2013;13:190. 277-1288.	 Saab S, et al. Liver Transpl. 2010;16: Younossi ZM, et al. Aliment Pharmac 2015;41:544-563. Maylin S, et al. Gastroenterology. 200 Instituto Nacional de Estadística (INE Tasas mortalidad. www.ine.es Chahal HS, et al. JAM Inern Med. 201 BOT Plus. www.portalfarma.com Real Decreto-ley 8/2010. www.boe.es Buti M, et al. Farm Hosp. 2014;38:41 López Bastida J, et al. Gac Sanit. 201 	ol Ther.)8:135;821-9.). 15 \$ 8-29.	
		Study funded by	Designed by

porib