Cost-Effectiveness Analysis of Exenatide versus GLP-1 Receptor Agonists in Patients with Type 2 Diabetes Mellitus

Capel M¹, Ciudin A², Mareque M³, Rodríguez-Rincón RM⁴, Oyagüez I³

¹ Astra Zeneca, Madrid, Spain;
 ² Hospital Universitari Vall d'Hebron, Barcelona, Spain;
 ³ Pharmacoeconomics & Outcomes Research Iberia (PORIB), Madrid, Spain;
 ⁴ Hospital Universitari Son Espases, Palma de Mallorca, Spain

PDB68

Background

- Type 2 diabetes mellitus (T2DM) in an endocrine and metabolic disorder that manifests when the body is unable to effectively use insulin to regulate blood glucosa level¹.
- Currently, the incorporation of glucagon-like peptide-1 (GLP-1) receptor agonists have expanded the treatment options for T2DM. These new therapeutic agents to initial therapy with metformine has been becoming more relevant due to reduction HbA_{1c} levels, without the adverse effects of hypoglycaemia or the weight gain of other oral antidiabetics drugs².

Table 3. Utility decrement and costs related to complications

	Utility	First-y	Maintenance	
	decrement	Fatal events	Non-fatal event	cost per year
Ischemic heart disease	- 0.090	—	€2,335	€887
Myocardial infarction	- 0.055	€4,755	€5,132	€887
Congestive heart failure	- 0.108	€4,755	€3,451	€3,662
Stroke	- 0.164	€4,755	€6,532	€2,551
Amputation	- 0.280	€3,782	€11,605	€1,702
Blindness	- 0.074	—	€1,932	€829
End stage renal disease	- 0.175 — €3	€31,451	€31,451	
BMI – per unit increase	- 0.0472			
BMI – per unit decrease	+ 0.0171			
Symptomatic hypoglycemia	- 0.0142	Episode cost		
Severe hypoglycemia	- 0.047	€1,154		
Nausea	—	€59.77		
Discontinuation of treatment	_	€59.77		

Objective

To assess the cost-effectiveness of exenatide compared to other GLP-1 receptor agonists available in Spain, in T2DM patients not adequately-controlled on metformin alone.

Methods

- A stochastic model of discrete events (*Cardiff Diabetes Model*)³, was adapted to the Spanish setting, to estimate the quality-adjusted life years (QALYs) gained and total costs of assessed drugs over a time horizon of 40 years.
- The patient's evolution was biannually modelled based on UKPDS68 equations⁴ simulating the disease evolution considering the T2DM-related micro- and macro-vascular complications (ischemic heart disease, myocardial infarction, stroke, congestive heart failure, amputation, blindness and end-stage renal disease), hypoglycemia, nausea, body-mass-index (BMI) changes and treatment discontinuation due to adverse events (AE).
- Initial demographic and clinical characteristics for T2DM assessed patients derived from literature⁵⁻¹⁰ (Table 1).
- Efficiency of exenatide 2 mg/weekly (EQW2) vs. dulaglutide 1.5 mg/weekly (DULA 1.5), vs. liraglutide 1.2 mg/daily (LIRA 1.2), vs. liraglutide 1.8 mg/daily (LIRA 1.8) and vs. lixisenatide 20 µg/daily (LIXI 20) was determined. All these therapies combined with metformine 2 g/daily.

Table 1. Demographic and clinic characteristics

Demographic characteristics	Value
Age (years)	67.70
Proportion female (%)	47.1%
Duration of type 2 diabetes mellitus (years)	10.07
Height (meters)/ Weight (kg)	1.67 m/73.50 kg
Proportion smokers (%)	12.10%
Clinic characteristics	
Basal HbA _{1c} level	7.28
Total cholesterol/High-density lipoprotein cholesterol (mg/dl)	200.60/42.30
Systolic blood pressure (mm Hg)	125.40

Results

• EQW2 resulted in greater QALYs (8.26) than DULA 1.5 (8.19 QALYs), LIRA 1.2 (8.10 QALYs), LIRA 1.8 (8.20 QALYs) and LIXI 20 (8.13 QALYs) (Table 4).

- Total costs/patient resulted €20,423.27 (EQW2), €22,611.94 (DULA 1.5), €21,065.97 (LIRA 1.2), €24,865.69 (LIRA 1.8) and €21,334.58 (LIXI 20) (Table 4).
- EQW2 was a dominant strategy (more effective and less costly) versus all the other GLP-1 (Table 4).

Table 4. Base case results

DULA 1.5	LIRA 1.2	LIRA 1.8	LIXI 20
0.07		0.00	0 1 0

- The efficacy of alternatives were obtained from a indirect comparison performed in a network metaanalysis¹¹(Table 2).
- Baseline utility value (0.80) derived from PANORAMA study⁶. Utility decrements associated to micro- and macro-vascular complications occurrence^{4,12}, hypoglycemia episodes¹³ and BMI changes¹⁴ were applied (Table 3).
- Treatment discontinuation due to AE, or poor control of diabetes (HbA_{1c} >7,5%) involved switch to 2nd with basal insulin (40 IU/daily) or 3rd line with basal insulin and bolus insulin (20 IU/daily).
- The National Health System perspective was considered, including direct costs (€,2018): drug-acquisition costs (Table 2), severe hypoglycemia, BMI increase, micro- and macro-vascular complications, nauseas and treatment discontinuation due to AE (Table 3).
- An annual discount rate of 3% was applied to costs and health outcomes¹⁵.
- Deterministic and probabilistic sensitivity analyses (SA) were performed.

 Table 2. Therapeutic alternatives: efficacy and costs

	MET 2	EQW 2	DULA 1.5	LIRA 1.2	LIRA 1.8	LIXI 20	NPH	
∆HbA _{1c} (%)	—	-1.34	-1.34	-0.96	-1.28	-0.75	-0.54	
∆Weight (kg)	—	-2.04	-2.38	-2.72	-3.09	-1.84	-1.703	
Discontinuation of treatment	—	0.063	0.140	0.120	0.130	0.030	—	
Nausea	—	0.240	0.520	0.440	0.490	0.310	—	
Symptomatic hypoglycemia	—	—	—	—	—	—	10.922	
Severe hypoglycemia	—	—	—	—	—	_	0.02	
	MET 2	EQW 2	DULA 1,5	LIRA 1,2	LIRA 1,8	LIXI 20	lns. basal	lns. en bolus
Annual drug cost*	€33.35	€1,217.59	€1,821.42	€1,555.97	€2,333.95	€1,503.13	€0.019 kg/daily	€0.008 kg/daily

ĺ	Incremental costs ($FON/2$ vs.)	€ _2 180	€_6/3	€ _1 112	<i>€</i> _011
i	$ICER (EOM/2 v_s)$	Dominant	Dominant	Dominant	Dominant
	10 LM (LQVV2 VS.)	Dominant	DUITIITIAITI	Dominant	Dominant

• Deterministic SA confirmed the model robustness.

• For a willingness-to-pay threshold of €20,000/QALY gained¹⁸, EQW2 resulted a cost-effective option compared to the other GLP-1, in 95-99% of the 1,000 MonteCarlo iterations of the probabilistic SA (Figure 1).

Figure 1. Probabilistic Sensitivity Analyses

NPH: Neutral-Protamina-Hagedorn. *Retail-prices plus VAT¹⁶ with mandatory deduction¹⁷

Referencias

- 1. Ahmed KA, et al. Biomed Res. 2010;21:147-55.
- 2. Eng C, et al. Lancet. 2014;384:2228-34.
- 3. McEwan P, et al. Diabetes Obes Metab. 2010;12(7):623-30.
- 4. Clarke PM, et al. Diabetologia. 2004;47(10):1747-59.
- 5. Sicras-Mainar A, et al. Rev Clin Esp. 2014;214:121-30.
- 6. Depablos-Velasco P, et al. Endocrinol Nutr. 2014;61(1):18-26.
- 7. Mata M, et al. Gac Sanit. 2002;16(6):511-20.
- 8. Instituto Nacional de Estadística. www.ine.es
- 9. Álvarez Guisasola F, et al. Diabetes Obes Metab. 2008;10 Suppl 1:25-32. 18. Vallejo-Torres L, et
- 10. Gil Montalbán E, et al. Gac Sanit. 2010;24(3):233-40.
- 11. Kayaniyil S, et al. Diabetes Ther. 2016;7(1):27-43.
 - 12. Bagus A, et al. Health Econ. 2005;14(3):217-30.
 - 13. Currie CJ, et al. Curr Med Res Opin. 2006;22(8):1523-34.
 - 14. Lane S, et al. Curr Med Res Opin. 2014;30(7):1267-73.
 - 15. López Bastida J, et al. Eur J Health Econ. 2010;11:513-20.
 - 16. Bot Plus 2.0. www.portalfarma.com
 - 17. Real Decreto Ley 8/2010. www.boe.es
- pl 1:25-32. 18. Vallejo-Torres L, et al. Health Econ. 2018;27(4):746-61.

A) EQW2 vs DULA 1.5; B) EQW2 vs LIRA 1.2; C) EQW2 vs LIRA 1.8; D) EQW2 vs LIXI 20

Conclusions

• Exenatide 2 mg/weekly would be a dominant alternative (more effective and less costly) versus the other GLP-1 for the treatment of T2DM patients not adequately-controlled on metformin alone.

Supported by:

AstraZene

