

COST-EFFECTIVENESS ANALYSIS OF APIXABAN VERSUS EDOXABAN FOR STROKE PREVENTION IN NON-VALVULAR ATRIAL FIBRILLATION PORTUGUESE PATIENTS

de Andrés-Nogales F¹, Gay-Pobes PR¹, Inês M², Polanco C³, Alves D³.

23 A 26 MAIO 2019

CENTRO DE CONGRESSOS DO ALGARVE

VILAMOURA

¹ Pharmacoeconomics & Outcomes Research Iberia (PORIB), Madrid (Spain)

² Laboratórios Pfizer, Porto (Portugal)

³ Bristol-Myers Squibb Farmacêutica Portuguesa, Paço de Arcos (Portugal)

BACKGROUND

- Non-valvular atrial fibrillation (NVAF) is the most frequent cause of cardiac arrhythmia and the main responsible for stroke and thromboembolic events.
- The last guidelines of European Society of Cardiology¹ recommended **anticoagulation therapy** as a preventive measure of the associated complications.
- Considering the different options available, there is a need of evidence about the **efficiency** of the anticoagulant treatment in these patients.
 - Apixaban have previously demonstrated to be a cost-effective option compared to other NOAC: dabigatran² and rivaroxaban³.
 - Edoxaban have been approved for stroke prevention in NVAF patients.

OBJECTIVE

• The objective of this study is to assess the **cost-effectiveness** of **apixaban 5 mg b.i.d** (twice a day) compared to **edoxaban (60 mg daily)** for stroke prevention in patients with NVAF in Portugal.

METHODS

- Patient population: characteristics of the 1,000 NVAF patients included in the hypothetical cohort assessed were obtained from ARISTOTLE apixaban trial⁴:
 - average age (70 years)
 - 35.5% of females
 - mean CHADS₂ score (2.1)
- The **efficacy** of therapies, represented in **clinical event rates per 100 patients-year**, and the safety data were derived from a **Bucher indirect treatment comparison** method of two phase III randomized, double-blind warfarin-controlled trials:
 - ARISTOTLE trial⁴ comparing apixaban versus warfarin
 - ENGAGE-AF trial⁵ comparing edoxaban versus warfarin

25 CONGRESSO MEDICINA INTERNA

METHODS

A Markov model with 10 health states^{2,3} (clinical events derived from NVAF risk of embolism and anticoagulation) was used to estimate the course of the disease in 6-week cycles, over the patients lifetime.

AC: anticoagulant;

CRNM: clinically relevant non major;

HS: Hemorrhagic stroke;

ICH: Intracranial hemorrhage;

MI: Myocardial infarction;

NVAF: Non-valvular atrial fibrillation; SE: Systemic embolism; w/o: without

Figure 1. Markov economic model of stroke prevention in NVAF population

METHODS

- The estimated **Hazard Ratios (HR) for edoxaban versus apixaban** were applied to event rates of ARISTOTLE trial⁴.
- Acetyl salicylic acid (ASA) administration was considered as 2nd line for those patients who stopped or withdrew the 1st line therapy with any of the two main drugs assessed.
 - Event rates for ASA derived from a subgroup of patients with prior vitamin K antagonists exposure from the AVERROES trial⁶.
- The **utilities** assigned to each health states were derived from scores of **EQ-5D** questionnaire obtained in a sample of NVAF patients in UK⁷.
- Temporal decrements of utilities were also applied for complications.

METHODS

- The analysis was performed from the National Health System (NHS) perspective.
- The total cost (€, 2019) estimation considered:
 - **Drug acquisition costs**, which were calculated considering retail price including VAT and reimbursement rate 69% applied, and according to SmPC authorized dosages: 10mg/daily for apixaban and 60mg/ daily for edoxaban.
 - Cost of acute and long-term complications were obtained from several national databases⁸.
 - Cost of yearly renal monitoring ⁹ and monthly-cost of expected dyspepsy (1.67%)⁴ related to any of the anticoagulant treatments.
 - Cost of NVAF clinical follow-up (a routine visit every 3 months)
 - Non-medical costs for both for acute and maintenance are referred to informal care cost and were obtained from Portuguese literature.
- Annual discount rate (5%)⁹ was applied for both, costs and health outcomes.
- A sensitivity analysis (SA) was performed to assess the robustness of the model results.

• In a 1,000 NVAF patients cohort, during their lifetime, apixaban would avoid numerous complications in comparison to edoxaban.

Number of events in total population	Apixaban	Edoxaban	Difference apixaban vs edoxaban
Ischemic stroke	248	253	-5
Hemorrhagic stroke	28	28	0
Systemic Embolism	26	26	0
Other ICH	13	14	-1
Other major bleeds	176	182	-6
CRNM bleeds	308	337	-29
Myocardial infarction	91	93	-2
Other cardiovascular hospitalization	1,270	1,267	3
Deaths due to stroke, HS, MI, SE	334	336	-2

Outcomes (per patient)	Apixaban	Edoxaban	Difference apixaban vs edoxaban
Life years gained	8.601	8.555	0.045
QALYs	6.105	6.071	0.034
Costs (per patient) (€)	Apixaban	Edoxaban	Difference apixaban vs edoxaban
Total costs (payer perspective)	€9,555.68	€9,533.40	€25.28
Cost-effectiveness results			
Incremental cost-effectiveness ratio (IC	€557,36		
Incremental cost-utility ratio (ICUR) (€/QALY gained)			€739,64

Table 1b. Incremental costs and outcomes (base case results)

LYG: Life years gained; QALYs: Quality-adjusted life years

- From a NHS perspective, apixaban would yield per each patient:
 - 0.045 life-years gained (LYG)
 - **0.034** additional quality-adjusted-life year (QALY).
- The total **incremental cost** for apixaban compared to edoxaban would be **€25.28** per patient.
- The incremental cost-utility ratio (ICUR) of apixaban versus edoxaban resulted in €739.64 per QALY gained.

In probabilistic SA,
77% and 79% of
iterations were under
an hypothetical
willingness-to pay
threshold of
€20.000/QALY and
€30.000/QALY,
respectively for NHS
perspective.

Incremental Effectiveness (QALYs)

Figure 2 . Probabilistic SA results

CONCLUSION

 According to the shown model outcomes, apixaban could be considered a cost-effective alternative for stroke prevention in NVAF patients in Portugal, when compared with edoxaban.

REFERENCES

- ¹Camm AJ, et al. Eur Heart J. 2012;33(21):2719-47.
- ²Betegon L, et al. Eur J Clin Pharm. 2014;16:0.
- ³ Canal C, et al. Pharmacoecon Span Res Art. 2015. doi.10.1007/s40277-015-0041-7
- ⁴Granger CB, et al. N Engl J Med. 2011;365:981-92.
- 5 Giugliano RP, et al. N Engl J Med. 2013;369:2093-104.
- ⁶Connolly SJ, et al. N Engl J Med. 2011;364:806-17
- ⁷ Sullivan P, et al. Med Decis Making. 201131:800-4.
- 8 Diário da República, 1.ª série N.º 173 7 de setembro de 2018. Portaria n.º 254/2018
- 9Attema AE, et al. Discounting in Economic Evaluations. Pharmacoeconomics. 2018 Jul;36(7):745-758.

25º Congresso Nacional de Medicina Interna

23-26 maio 2019 | Vilamoura, Portugal

This work was carried out with an unrestricted grant from Bristol-Myers Squibb and Pfizer.