COST-EFFECTIVENESS OF TOFACITINIB FOR THE TREATMENT OF MODERATE-TO-SEVERE ACTIVE ULCERATIVE COLITIS AFTER BIOLOGICAL FAILURE OR INTOLERANCE IN SPAIN

Menchén, L¹; de Andrés-Nogales, F²; García, S³; Sánchez-Guerrero, A⁴; Menchén, B⁴; Cábez, A⁵; Gómez, S⁵; López Ibáñez-Aldecoa, A⁵; Casado, MÁ²; Peral, C⁵; Taxonera, C⁶

¹Gastroenterology Dpt. Hospital General Universitario Gregorio Marañón, Madrid (Spain); ²Pharmacoeconomics & Outcomes Research Iberia (PORIB), Madrid (Spain); ³Gastroenterology Dpt. Hospital Universitario Miguel Servet, Zaragoza (Spain); ⁴Hospital Pharmacy. Hospital Universitario Puerta de Hierro-Majadahonda, Madrid (Spain); ⁵Pfizer S.L.U., Alcobendas, Madrid (Spain); ⁶Gastroenterology Dpt. Hospital Clínico San Carlos, Madrid (Spain);

INTRODUCTION

- Ulcerative colitis (UC) is a chronic inflammatory disease which main symptoms are abdominal pain, bloody diarrhoea and alternated periods of remission and relapses¹. UC is known to be a costly disease with great impact on patient's quality of life and productivity².
- Current treatments for moderately-to-severily UC include conventional therapy (such as steroids or thiopurines), immunosuppressant, biological drugs and the more recent oral small molecules such as tofacitinib, a Janus Kinase inhibitor^{1,3}. Surgery is considered the last option¹.
- According to the American College of Gastroenterology clinical guidelines⁴: patients who are primary nonresponders to an anti-TNF should be evaluated and considered for alternative mechanisms of disease control (e.g., in a different class of therapy) rather than cycling to another drug within the anti-TNF class.
- Thus, given the promising spectrum of new emerging therapeutic options, economic evaluations are needed in order to help healthcare systems making informed decisions.

OBJETIVE

To evaluate the cost-effectiveness of using tofacitinib for the treatment of moderate-to-severe active ulcerative colitis after failure or intolerance to a first line of biologic treatment, from the Spanish National Health System (NHS) perspective.

METHODS

- A panel of experts defined three different scenarios to compare tofacitinib vs adalimumab, infliximab and vedolizumab treatments after failure/intolerance to a biologic drug (fig.1).
- A markov model was developped with cycles of 8 weeks and a lifetime horizon (fig.2).
- Two different treatment periods were considered: induction and maintenance.

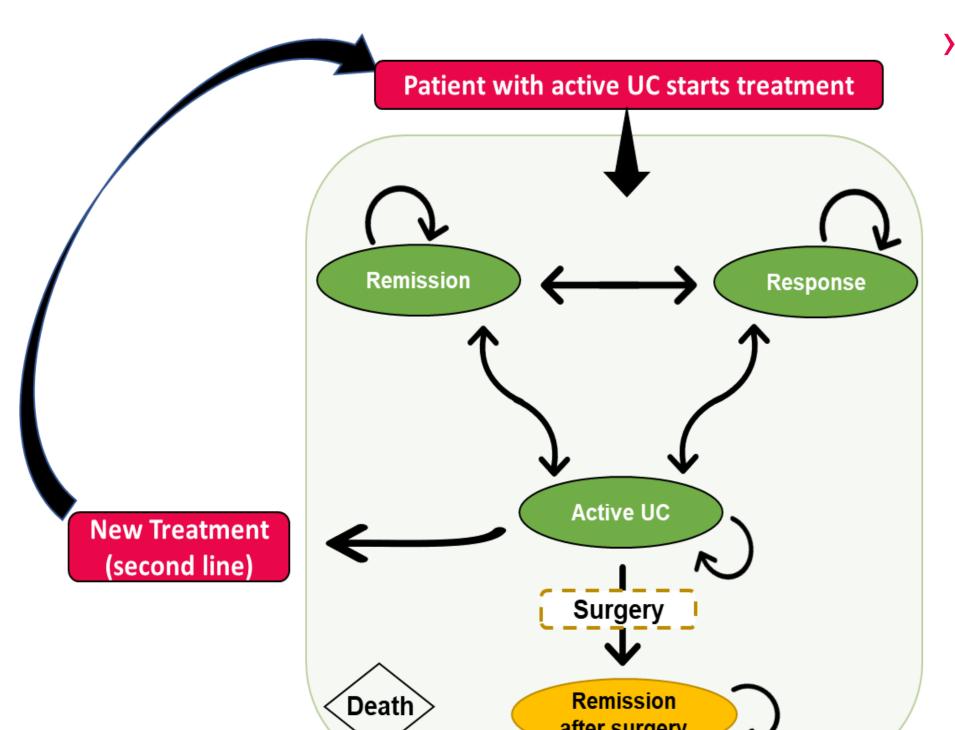


Figure 2: Structure of the model

Patients can change to second line treatment: 1) if they remain with active UC after induction; or 2) if there

is a loss of response under maintenance treatment (patients shift to active UC state again).

1st Scenario **Tofactinib** vs 📈 2nd Scenario Infliximab Tofactinib 3rd Scenario

Figure 1: Comparisons made in the model

Tofactinib

Vedolizumab

- A hypothetical cohort of 1,000 patients can shift through 5 different health states, defined according to the Mayo's scale score as (fig.2):
 - ► Remission (Mayo score = 0-2; and all subscores ≤1)
 - ► Response (decrease in baseline Mayo score of ≥3 and at least a 30%; with a decrease in rectal bleeding subscore of ≥1 point or a value of 0-1)
 - Moderate-to-severe active (Mayo score ≥ 6)
- Remission after surgery
- Death
- The model considered an annual rate for surgery of 1,44%⁵, with the possibility of post-surgery
- Patient profile was defined based on characteristics of patients included in tofacitinib's OCTAVE induction 1 & 2
- Comparative efficacy data were inferred from a network meta-analysis⁸, where specific analyses for induction and maintenance periods were considered.
- Utilities were obtained from literature^{9,10}.

complications.

clinical trials⁶ (table 1).

Serious adverse events were included: serious infections upper respiratory tract infections – tuberculosis – malignancies – herpes zoster – acute reaction after infusion – infusion site reactions.

Table 1: Parameters used in the model

Parameter	value				
Baseline patient characteristics					
Mean age (years)	41.2 ⁶				
Gender (% male)	59.2% ⁶				
Mean weight (Kg)	71.93 ⁷				
Variables considered in the model					
Efficacy (Mayo)	NMA ⁸				
	Remission: 0.879				
Utilities (EO ED)	Response: 0.769				
Utilities (EQ-5D)	Active UC: 0.419				
	Remission after surgery: 0.6810				
Mortality	Spanish general population ⁷				
Mortality after surgery	1.18% (mean incidence) ¹¹				

EQ-5D=Eurogol 5 Dimensions questionnaire; NMA=Network meta-analysis.

METHODS Cont'

- Direct medical costs considered in the model were: drug acquisition, drug administration, disease-related costs according to health-state and adverse events^{12,13} (table 2 & 3). Local unitary costs (€, 2019) were applied.
- Acquisition costs were calculated based on public exfactory prices¹⁵ with mandatory deduction (7,5%)¹⁶ or using reference price when available¹⁷. Dosis per cycle (8 weeks) were estimated with each specific SmPC¹⁸.
- Costs and outcomes were discounted at 3%¹⁹.
- > Probabilistic sensitivity analysis were conducted (€25,000/QALY threshold considered)²⁰.

Table 2: Costs used in the model

	Paramo	eter	Costs
	Active	€1,149.84	
Costs of	Remiss	€199.53	
health states	Respo	€426.08	
(cost per	Cost of surgery	€26,918.56	
cycle) ^{13,14}	Remission after	0-2 years	€426.90
	surgery	> 2 years	€194.38
	Serious in	€5,293.57	
	Upper respiratory	€3,737.70	
0.45 / /	Tubercu	€7,682.64	
SAE (cost per event) ^{12,13}	Maligna	€9,842.51	
	Herpes z	€4,450.39	
	Infusion relate	€3,462.45	
	Site infusion	€3,193.77	

AE=Adverse events: UC=Ulcerative colitis: SAE=Serious adverse events

Table 3: Costs used in the model

	Therapy	Characteristics	Unitary cost	Cost per induction cycle	Cost per maintenance cycle	
	Adalimumab - BSM	2 syringe 40mg	€808.50	€3,233.99	€1,616.99	
	Infliximab - BSM	1 vial 100mg	€402.21	€4,339.64	€1,446.55	
Drug costs ^{15,18}	T. C 'C' . 'L	56 tablets 5mg	€762.20	CO 040 00	C4 F04 40	
	Tofacitinib	56 tablets 10mg	€1,524.40	€3,048.80	€1,524.40	
	Vedolizumab	1 vial 300mg	€3,206.05	€9,618.15	€3,206.05	
	Adalimumab - BSM	SC	-	€121.84	€10.97	
Administration costs ¹³	Infliximab - BSM	IV	-	€787.86	€262.62	
333.3	Vedolizumab	IV	-	€481.47	€160.49	

BSM=Biosimilar; IV=Intravenous; SAE=Serious adverse events; SC=Subcutaneous

RESULTS

- When compared to infliximab and vedolizumab, tofacitinib is a dominant treatment option and generates cost savings (tables 4 & 5).
- > When compared to adalimumab, tofacitinib generates small QALY gain with slight incremental costs (table 4) > adalimumab had a lower comparative efficacy⁸ thus increasing treatment discontinuation and thereby reducing acquisition costs.
- The probability of tofacitinib of being cost effective was above 70% in comparison to infliximab and vedolizumab (table 5).

Table 4: Base case results

1st SCENARIO			2 nd SCENARIO		3 rd SCENARIO				
Comparison:	Tofacitinib	Adalimumab	Δ	Tofacitinib	Infliximab	Δ	Tofacitinib	Vedolizumab	Δ
Drug acquisition (€)	8,351.09	5,996.89	2,354.2	8,351.09	8,577.87	-226.78	8,351.09	18,123.27	-9,772.18
Drug administration (€)	0.00	140.58	-140.58	0.00	1,557.31	-1,557.31	0.00	907.22	-907.22
Disease-related costs (€)	152,294.67	153,392.60	-1,097.93	152,294.67	152,634.56	-339.90	152,294.67	152,796.87	-502.20
SAE related costs (€)	261.92	415.92	-154.00	261.92	1,028.84	-766.92	261.92	517.87	-255.95
Total costs (€)	160,907.67	159,945.99	961.68	160,907.67	163,798.58	-2,890.91	160,907.67	172,345.23	-11,437.56
QALY	11.06	10.97	0.091	11.06	11.03	0.028	11.06	11.02	0.042
ICER €10,567.21/QALY		Tofacitinib is Dominant		Tofacitinib is Dominant					

ICER=Incremental cost-effectiveness ratio; QALY=Quality-adjusted life-years; SAE=Serious adverse events; Δ =Incremental.

Table 5: Summary of base case results

SEQUENCE COMPARISON:	TOFACITINIB VS ADALIMUMAB	TOFACITINIB VS INFLIXIMAB	TOFACITINIB VS VEDOLIZUMAB
∆Total costs	€961.68	-€2,890.91	-€11,437.56
Δ QALY	0.091	0.028	0.042
Probabilistic Sensitivity Analysis*	59.7%	74.2%	90.6%

*Probability of tofacitinib-containing sequence of being cost-effective considering a €25,000/QALY willingness to pay threshold. QALY=Quality-adjusted life-years; Δ =Incremental.

CONCLUSIONS

According to our results, after failure or intolerance to biologic therapy, tofacitinib is a costsaving therapy for the treatment of moderate-to-severe UC patients with similar QALY gains vs infliximab and vedolizumab; besides being a cost-effective alternative when compared to adalimumab.

REFERENCES

- 1. Ungaro R et al., Lancet 2017; 389(10080):1756-70.
- 2. Kawalec P. Arch Med Sci. 2016; 12(2):295-302. 3. Xeljanz® SmPC. www.ema.Europa.eu/ema/
- 4. Rubin DT et al., Am J gastroenterol 2019; 114(3):384-413. 5. Chaparro M et al., ECCO 2019 – Poster P790 epidemiology. www.ecco-ibd.eu/
- Sandborn WJ et al., N Engl J Med. 2017; 376(18):1723-36.
- 7. Statistics National Institute. www.ine.es 8. Rubin DT et al., UEGW 2018 – Poster P0362.
- 9. Woehl A et al., Gut. 2008; 57(Suppl.1):A153. 10. Arseneau KO et al., Clin Gastroenterol Hepatol. 2006; 4(9):1135-42.

11. Peyrin-Biroulet L et al., Aliment Pharmacol Ther. 2016; 44(8):807-16.

- 12. Ministerio de Sanidad Servicios Sociales e Igualdad. Instituto de Información Sanitaria, 2018. CIE9M-CMBD 2015.
- http://pestadistico.inteligenciadegestion.msssi.es/ 13. eSalud. Oblikue consulting. www.oblikue.com
- 14. Taxonera C et al., Gut 2009; 58(Suppl II):A177.
- 15. BOT Plus. www.portalfarma.com 16. Real Decreto-Ley 8/2010, 20 de Mayo. www.boe.es
- 17. Real Decreto Legislativo 1/2015, de 24 de julio. Orden SCB/1244/2018. www.boe.es 18. AEMPS. www.cima.aemps.es
- 19. López-Bastida J et al., Eur J Health Econ. 2010;11(5):513-20. 20. Vallejo-Torres L et al., Heal Econ (United Kingdom). 2018;27(4):746-61.

DISCLOSURE

• This analysis was sponsored by Pfizer S.L.U. Spain. CP, SG, ALIA and AC are employees of Pfizer. FAN and MAC are employees of PORIB, which received funding from Pfizer SLU to conduct this analysis.